(x^2+2x)/(2x^3+10x^2+12x)

Simple and best practice solution for (x^2+2x)/(2x^3+10x^2+12x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+2x)/(2x^3+10x^2+12x) equation:


D( x )

2*x^3+10*x^2+12*x = 0

2*x^3+10*x^2+12*x = 0

2*x^3+10*x^2+12*x = 0

2*x^3+10*x^2+12*x = 0

2*x*(x^2+5*x+6) = 0

x^2+5*x+6 = 0

DELTA = 5^2-(1*4*6)

DELTA = 1

DELTA > 0

x = (1^(1/2)-5)/(1*2) or x = (-1^(1/2)-5)/(1*2)

x = -2 or x = -3

2*x = 0

2*x = 0 // : 2

x = 0

x in (-oo:-3) U (-3:-2) U (-2:0) U (0:+oo)

(x^2+2*x)/(2*x^3+10*x^2+12*x) = 0

x^2+2*x = 0

x*(x+2) = 0

x+2 = 0 // - 2

x = -2

x*(x+2) = 0

2*x^3+10*x^2+12*x = 0

2*x*(x^2+5*x+6) = 0

x^2+5*x+6 = 0

DELTA = 5^2-(1*4*6)

DELTA = 1

DELTA > 0

x = (1^(1/2)-5)/(1*2) or x = (-1^(1/2)-5)/(1*2)

x = -2 or x = -3

2*x*(x+3)*(x+2) = 0

(x*(x+2))/(2*x*(x+3)*(x+2)) = 0

( x+2 )

x+2 = 0 // - 2

x = -2

( x )

x = 0

x in { -2}

x in { 0}

x belongs to the empty set

See similar equations:

| 83-w=86 | | 73=62-u | | 90=15+x(3) | | 90=15+(x/3) | | 6-8x=51-29x | | -v+248=174 | | 0.3+0.18= | | 218=105-v | | 278=-v+186 | | -u+233=120 | | 7p+8q=12 | | 5x+12=100 | | 6.47-d=9.77 | | 4(3x+7)-6(4x-7)=10x+3(2x-6) | | 6-4g=18 | | 4k+4=2(6k-14)+64 | | 200-u=119 | | 874=16(b+17)+26 | | x^2+5=10 | | 2(3x+9)=1/8 | | 990=30(k+3) | | 2/3x-19=18 | | 3x-15=21-6x | | (x*x)+(5x)=8 | | -2(w+883)=-546 | | 6y+2=2y+10 | | 0=(2750-400)/5.49 | | x+3x-8=5x-7 | | 15=-3/2v | | -30(p+309)+835=505 | | 3(h-41)-26=55 | | -10(y+90)+-74=-84 |

Equations solver categories